PHYSICAL REVIEW E 67, 016110 (2003
Logarithmic roughening in a growth process with edge evaporation
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Roughening transitions are often characterized by unusual scaling properties. As an example we investigate
the roughening transition in a solid-on-solid growth process with edge evapofatioon, M. Evans, H.
Hinrichsen, and D. Mukamel, Phys. Rev. Letb, 2746 (1996], where the interface is known to roughen
logarithmically with time. Performing high-precision simulations we find appropriate scaling forms for various
quantities. Moreover we present a simple approximation explaining why the interface roughens logarithmi-
cally.
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I. INTRODUCTION Moreover, we present a simple approximation which ex-
plains why the interface roughens logarithmically.
A large variety of models for surface growth is known to
display universal scaling lawd—5]. In most cases one ob- Il. GROWTH MODEL WITH EVAPORATION AT THE
serves simple power-law scaling, i.e., the widlthof an ini- EDGES OF PLATEAUS
tially flat interface grows with time as
The growth models investigated in RET] are defined as
W~t7, (1) solid-on-solid deposition-evaporation processes with the spe-
cial property that atoms can only evaporate at the edges of
wherey is the so-called growth exponent. In a finite systemterraces. The models are defined od-dimensional lattice
the width eventually saturates at a finite valigy,, which  with L sites and periodic boundary conditions, where each
grows with the linear system sizeas site i is associated with an integer variatiie. In Ref. [7]
N two variants of models have been considered. Here we will
Wsar~L, 2) focus on the physically motivategbstricted model in one

wherea is the roughness exponent. Both asympotic powerd'menS'on’ where the heights at neighboring sites obey the

laws can be combined in a single scaling form inequality
W(L,t)=LeF(tL?), @ =yl <1. )

where z=a/y is the dynamic exponent arfdis a scaling The model evolves by random-sequential updates, i.e., a site
function with an appropriate asymptotic behavior. This typel is randomly selected and one of the following moves is
of power-law scaling, also known as Family-Vicsek scalingcarried out(see Fig. 1. With probabilityq an atom is depos-

[6], is generic for a large number of self-similar growth pro- ited at sitei, increasingh; by 1. Otherwise one of the nearest
cesses. However, in some cases the interface was found f&ighbors is randomly selected. If the selected neighbor is at
roughenlogarithmically with time. This may happen, for ex- @ lower height, indicating the edge of a terrace, an atom is
ample, when a system undergoes a roughening transitiohémoved from site. In both cases a move is abandoned if the
The purpose of this paper is to study a simple model withresulting configuration would violate the conditi¢h). Each
such a logarithmic scaling behavior in more detail. To thisattempted update corresponds to an average time increment
end we consider a class of solid-on-solid growth models inAt=1/L.

troduced a few years ago by Alat al.[7,8] which have the In the limit L—c the model has the following phenom-
special feature that atoms can only evaporate at the edges @fological properties. If the growth rateis small, the inter-
terraces. The models exhibit a robust phase transition from &ce is flat and pinned to a spontaneously selected bottom
nonmoving smooth phase to a moving phase, where the idayer. Small islands will occasionally grow on top of this
terface roughens continuously. Remarkably, this rougheningottom layer but will quickly be eliminated by desorption at
transition takes place even in one spatial dimension. At théhe islands edges so that the system eventually reaches a
critical point the interface width was found to increase loga-Stationary state characterized by a finite width. d\ss in-
rithmically with time. However, so far it was impossible to creased, more and more islands on top of the bottom layer
unfold the complete scaling picture since previous numericaire produced, until above., the critical value ofq, the
simulations were not accurate enoUgh Here we close this islands merge and the interface starts moving. Approaching
gap by performing high-precision simulations based on &l from below, the stationary width is found to diverge loga-
parallelized code. As a main result we find that B).has to  rithmically. In Refs.[7,8] it was shown that the roughening

be replaced by a logarithmic scaling law of the form transition in this class of models is driven by a directed per-
colation (DP) transition [9] at the spontaneously selected
W2(L,t)=\In L+ f(t/L?), (4) bottom layer. This means that the density of exposed sites at
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FIG. 1. Dynamic rules for deposition—) and evaporation ] ] ]
(+) of the restricted model introduced in RET]. Note that evapo- FIG. 2. Density of exposed sites at the bottom layg(t) times
ration from the middle of plateaus is not allowed. t? in a system with 32768 sites averaged over up to 1000 indepen-

dent runs for different values of g.
the bottom layemn, can be interpreted as the density of ac- _ _
tive sites in a DP process. Therefore, at criticality this densityand the squared interface width
is expected to decay as

L
no~t~2, (6) W2= 21 (hi—H)? €)

|~

whered= B/v, =0.1595 is one of the dynamic critical expo-
nents of DP in(1+1) dimensions. Similarly the critical be-

havior at the first few layers above the bottom layer can b
described in terms of unidirectionally coupled DP processes

are found to increaskgarithmically with time as

[10]. Roughly speaking each layer can be associated with a WA(t)=7In t, (10
DP process which is coupled to the layer below. Effective
couplings in opposite direction, which certainly exist in the H)=c Int, (11)

model defined above, turn out to be irrelevant. Field-
theoretic renormalization group studies revealed that the )
scaling exponentsy; and v, (and hence their ratie =~ Where 7=0.102(3) ando=0.133(3) (see Fig. 3 Thus,

= /v,) are the same at all levels, while the exponentsapart from different prefactors, the squared width and the
associated with the order parameters decrease with increa@€an height show the same type of logarithmic behavior. We
ing height above the bottom layer. Thus the concept of uninote that in a previous work the width was erroneously con-
directionally coupled DP successfully explains the criticaliectured to increase a&/(t)~(Int)***[8].
behavior at the first few layers above the bottom layer. How-

ever, it cannot predict the critical properties of the interface FETE e et e R T TR

as a whole, especially the scaling of the interface width. 2 ::::' LIS B T g
E el 3
C o Hiyflnt |
I1l. NUMERICAL SIMULATIONS 15f M2k L B ]

. . . . i 14 :— E-m'fJ——n. -~

A. Scaling properties at the critical point R ¢ 1 .

[ noaf - ]

Performing high-precision simulations on a parallel com- [ |77 7 0 w0 o0 it~ Wi

puter we first used Ed6) to estimate the critical threshold. i t ! g

As shown in Fig. 2 we obtain the result

0.5k .
g.=1.88611) (7)
which is much more accurate than the previous estimate re- Tl GECES i el RN sobugued ol
ported in Ref.[7]. Moreover, our simulations confirm that 10" 10’ 10 10 10 1w’ 10"
the dynamics at the bottom layer is indeed driven by a DP t[MC5]

process.

. — .
At the critical pointq=q. the average height FIG. 3. The squared interface widii“ and the average height

H as functions of time in a log-lin plot. The simulation parameters
L are the same as in Fig. 2. The inset shows that both quantities
h; (8) increase logarithmically at the critical point. Small deviations for

=1 t>10° can be traced back to the onset of finite-size effects.

|~

H=
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512 In (/L") In (t/L%)
256
128 FIG. 5. Finite-size simulations: Data collapse of the curves
shown in Fig. 4 according to the scaling forni47) for L
=32,64...,1024. In order to eliminate deviations due to initial

transients all data points fak< 100 have been discarded.

Apparently the amplituda is universal in the sense that it
does not depend on the choice of the boundary condition.

Unlike the width, the interface height does only saturate if
fixed boundary conditions are used. Here we find a similar
formula

HsalL)=Bs+us InL, (14)
where
Bi=-0.241), wu;=0.21210). (15

In order to collapse the curves shown in Fig. 4, recall that
b ] the roughening transition in this model is driven byla-1)-
T R T T O dimensional DP process at the bottom layer, which is char-
?D 10 10° 10 10° 10° 10° 7 acterized by a dynamic exponent
t [MCS5]

z=v| /v, =1.5807. 16
FIG. 4. Finite size simulations: Squared wid#?(L,t) and IrvL (16

mean heighH(L,t) averaged over at least 500 independent runs in . . )
a finite system with.=8,16,32 . . .,1024 sites fo(a) periodic and ~ Moreover it has been shown that the critical dynamics at the

(b) fixed boundary conditions. In the lower panel the curves forfi'st few layers is the same as in a sequence of unidirection-

H(t) have been shifted vertically. ally coupled DP processes, which are all characterized by the
samedynamic exponent. Therefore, it is reasonable to as-
B. Finite-size simulations sume that the roughening transition as a whole is character-

ized by the dynamic exponent of DP so that finite-size scal-

In a finite system the critical behavior depends on the typ&,q functions can only depend on the scaling-invariant ratio
of the boundary condition. In what follows we considay t/L% Thus, the expected scaling forms read

periodic and(b) Dirichlet boundary conditions, where the
sites at the boundary are fixed at zero height. As shown in

2 —_ z
Fig. 4, the average heighti(L,t) and the squared width WAL D=NIn L+1(t/L7),

W2(L,t) first increase logarithmically until finite-size effects (17)
become relevant and the system crosses over to a different H(L,t)=pu In L+g(t/L?),
regime, where the width saturates. Measuring the saturation
levels we find that where f(¢) and g(¢) are scaling functions with the
5 asymptotic behavior
Weo(L)=A, i+ ApsInL, (12

A M
where the indicep, f stand for periodic and fixed boundary f(e)=-In¢ g(&=-1In¢ (18
conditions, respectively. Our best estimates are

for é—0 andf(&)=A andg(§)=B for é&—o. In order to

verify these scaling forms we plotv?(L,t)—\ InL and
(13 H(L,t)—u InL versust/LZ As shown in Fig. 5, we obtain
A;=-0.211), X{=0.1632). excellent data collapses.

A,=—0.161), \,=0.1612),
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3 T 3 TABLE |. Summary of the estimated amplitudes.
= = [ Quantity Amplitude Estimate
=) g 1k
5 el WA(t) T 0.102(3)
S = 0 H(t) o 0.133(3)
= =L W2(L,t) Ap 0.161(2)
| T WA(L,t) At 0.163(2)
D = 0 ST = 0 H(L,t) Kp 0.208(10)
In (¢ [e]™) In (te]™ H(L,t) iy 0.212(10)
2
FIG. 6. Off-criical simulations fore==0.0001, +0.0002, W) 7 0.173(10)
...,=0.0128 on a chain with 32 768 sites averaged over 200 in- H(et) ¢ 0.230(10)
dependent runs. The figure shows data collapses according to the
scaling forms(19). In order to eliminate deviations due to initial | .
transients all data points far 100 have been removed. critical exponents, are o longer mdependent. Only two of
them, sayn and ¢, are independent while the others can be
C. Off-critical simulations expressed as
A similar situation is encountered in off-critical simula- A=nlv
tions. In the subcritical regimg<q. the width and the av- +
erage height saturate at
M= (;b/ L
Wi(€)=C—7nIn|e], (24)
=7l v,
Hsa(€)=D—¢ In|€], (19
o=¢l V|,

where e=q—(q. denotes the distance from criticality. Fol-

lowing the same arguments as in the preceding section, thghere v, ~1.0968 andy=1.7338. As shown in Table |
conjectured scaling forms read these relations are compatible with the numerical results.

W2(e,t)=— 7 In|e|+ F(t]€]"),
IV. SIMPLE APPROXIMATION
H(et)=—¢ In|e|+G(t|€]"), (20) Why does the interface roughen logarithmically at the
transition? To answer this question we present a simple ap-

wherev=1.7338 is the temporal scaling exponent of DP inproximation for the average interface heightL) in a finite
(1+1) dimensions. These scaling forms are expected to holgh +1)-dimensional system at criticality. We consider fixed
not only below but also above criticality. In fact, plotting houndary conditions, i.e., the interface is pinned to the bot-
W?(e,t) + 7 In[d andH(e,t) + ¢ In|el versust|e| "l (see Fig.  tom layer at the two boundary sites. In between the interface

6), the best data collapses are obtained for may return to the bottom layer several times, dividing the
chain into intervals of different length€,,€,, etc, as
7=0.17310), ¢=0.23010), (21) sketched in Fig. 7. The approximation relies on the following
_ ) assumptions:
while the constants are estimated by (i) The probability distribution for the interval sizésis
the same as the size distribution of inactive islands in a DP
C=-0401), D=-0541). (22 process, which is known to decrease B§€)~ €572
={ "=
D. Relations among the amplitudes (i) As we are using fixed boundary conditions, we will

assume that this probability distribution is cut off at the sys-
tem size, i.e.P(€)=0 for ¢=L.

(i) The sites, where the interface touches the bottom
layer, can be regarded as fixed boundary conditions for the

Obviously the scaling formgl7) and(19) suggest that the
exponentiatecjuantities exp(?) and expH) display ordi-
nary power-law scaling. This would imply that the results for
finite-size and off-critical scaling can be combined in a
single scaling form, e.g.,

exgd W2(e,L,t)]=L "F(eLY"1 t/L?),

ex H(e,L,t)]=L G(eL Y"1, t/L?). (23 I, I, A

This in turn would imply that the six amplitudes FIG. 7. Approximation of the average height by considering
N\, u,7,0,7,¢ introduced above, which now play the role of islands of sizef,,¢,,€5,etc. (see text
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dynamics taking place at the following layer.

While the first two assumptions can be justified by nu- f d€ €P(O)[1+2H(€)+My(€)]
merical checks, the third assumption is crucial since the sites M,(L)= 0 . (3D
at the bottom layer evolve in time and can only be regarded de{, eP(0)
as fixed in an approximate sense. However, using this ap-

proximation we can derive a recursion relation since each

island (for example the island encircled by the dotted line inleading to the differential equation
Fig. 7) can be regarded as an independent growth process

taking place in a finite system of siewith fixed boundary sz(L)
conditions at the following layer. Obviously, the average

height of such an island will be-#H(€). In order to calcu-

late the average height of the entire interfat@.), one has In order to remove the mixed term on the right-hand side we
to add up all these contributions weighted by the island sizelifferentiate the squared widthW?(L)=M(L)—H?(L)

€. Replacing sums by integrals, this leads to the integralith respect ta. and combine the result with E¢6):
equation

Jd€€P(€) LP(L)+2LP(L)H(L). (32

d[W2(L)—My(L)] (L
] WA LL A )]f d€ €P(€)=—2LP(L)H(L).
0
+
fo de €P(€)[1+H(€)] (33)
H(L)= - . (25 . . .
f de ¢P(¢) Inserting Eq.(32) the mixed term drops out and we obtain
0 the differential equation
Shifting. the denominator to thg left-hand side and differenti- dWZ(L)f d¢ ¢P(£)=LP(L), (34)
ating with respect td. we obtain dL
dH(L) (L which has exactly the same form as E@6). Therefore,
aL fo d¢ ¢P(£)=LP(L), (26)  W?(L) andH(L) will only differ by a constant. Again the

approximation correctly reproduces the logarithmic increase
. but cannot predict the precise value of the amplitude.
or equivalently

V. CONCLUSIONS

dH(L
E_ ) J de¢ €P(¢ 27 In the present paper, we have analyzed the scaling behav-
ior at the roughening transition of a restricted solid-on-solid
) ) growth process with evaporation at the edges of terraces.
leading to the solution Restricting to the case of a one-dimensional substrate we
have carried out extensive Monte Carlo simulations, exceed-
L B ing the temporal range of previous numerical studies by three
H(L):CO”SH”JO d¢ £P(£)=const ZI” L. (28 decades. The numerical results confirm that the transition is
indeed driven by a directed percolation process at the bottom
L . layer. Furthermore, they clearly show that squared interface
Thus the approximation correctly reproduces the logamhm'%dth W2(t) and the average height above the bottom layer
mg\r;:\fgr O:h;he rz\é?crtae%e ar;ﬁ'%:ltﬂ;n aﬂf/':'te grgécﬂlf?gf;emH(t) increase logarithmically with time. Analyzing numeri-
from the measSred valu,e~0p21 R L cal data from finite—.size and_ off-critical simulations we have

A similar arqument can be.us.ed to explain the logarithmi ostulated appropriate scaling forms which generate excel-
. ) : . ent data collapses. These scaling forms can be interpreted in
increase of the squared Wldth.. To this end we first calculat%uch a way that the exponentiated quantities A&p@nd
the second moment of the height expH) obey ordinary power-law scaling, which allows one

L to derive various relations among the amplitudes. Moreover,
1 we have presented a simple approximation which explains
Mo(L)= 2 : (29 why W? andH grow logarithmically.

In contrast to the expectations expressed in R&f. we
cannot find evidence for several competing length scales.
Moreover, there is no evidence for logarithmic scaling based
on local scale invariandgl 1], rather the system shows ordi-
nary scaling after an appropriate redefinitiGgxponentia-

Mo(€)|h—ns1=1+2H(€)+My(£). (30 tion) of the order parameters.
Our results suggest that any roughening transition, which
Replacing sums by integrals we obtain the integral equatiois driven by a phase transition from an active into an absorb-

Using the same assumptions as before, each island of size
contributes toM,(L) with a term
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