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Logarithmic roughening in a growth process with edge evaporation

Haye Hinrichsen
Theoretische Physik, Fachbereich 8, Universita¨t Wuppertal, 42097 Wuppertal, Germany

~Received 7 September 2002; published 24 January 2003!

Roughening transitions are often characterized by unusual scaling properties. As an example we investigate
the roughening transition in a solid-on-solid growth process with edge evaporation@U. Alon, M. Evans, H.
Hinrichsen, and D. Mukamel, Phys. Rev. Lett.76, 2746 ~1996!#, where the interface is known to roughen
logarithmically with time. Performing high-precision simulations we find appropriate scaling forms for various
quantities. Moreover we present a simple approximation explaining why the interface roughens logarithmi-
cally.

DOI: 10.1103/PhysRevE.67.016110 PACS number~s!: 05.70.Ln, 68.43.2h, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

A large variety of models for surface growth is known
display universal scaling laws@1–5#. In most cases one ob
serves simple power-law scaling, i.e., the widthW of an ini-
tially flat interface grows with time as

W;tg, ~1!

whereg is the so-called growth exponent. In a finite syste
the width eventually saturates at a finite valueWsat, which
grows with the linear system sizeL as

Wsat;La, ~2!

wherea is the roughness exponent. Both asymptotic pow
laws can be combined in a single scaling form

W~L,t !5La f ~ t/Lz!, ~3!

where z5a/g is the dynamic exponent andf is a scaling
function with an appropriate asymptotic behavior. This ty
of power-law scaling, also known as Family-Vicsek scali
@6#, is generic for a large number of self-similar growth pr
cesses. However, in some cases the interface was foun
roughenlogarithmicallywith time. This may happen, for ex
ample, when a system undergoes a roughening transi
The purpose of this paper is to study a simple model w
such a logarithmic scaling behavior in more detail. To t
end we consider a class of solid-on-solid growth models
troduced a few years ago by Alonet al. @7,8# which have the
special feature that atoms can only evaporate at the edg
terraces. The models exhibit a robust phase transition fro
nonmoving smooth phase to a moving phase, where the
terface roughens continuously. Remarkably, this roughen
transition takes place even in one spatial dimension. At
critical point the interface width was found to increase log
rithmically with time. However, so far it was impossible
unfold the complete scaling picture since previous numer
simulations were not accurate enough@8#. Here we close this
gap by performing high-precision simulations based on
parallelized code. As a main result we find that Eq.~3! has to
be replaced by a logarithmic scaling law of the form

W2~L,t !5l ln L1 f ~ t/Lz!, ~4!
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Moreover, we present a simple approximation which e
plains why the interface roughens logarithmically.

II. GROWTH MODEL WITH EVAPORATION AT THE
EDGES OF PLATEAUS

The growth models investigated in Ref.@7# are defined as
solid-on-solid deposition-evaporation processes with the s
cial property that atoms can only evaporate at the edge
terraces. The models are defined on ad-dimensional lattice
with L sites and periodic boundary conditions, where ea
site i is associated with an integer variablehi . In Ref. @7#
two variants of models have been considered. Here we
focus on the physically motivatedrestricted model in one
dimension, where the heights at neighboring sites obey
inequality

uhi2hi 11u<1. ~5!

The model evolves by random-sequential updates, i.e., a
i is randomly selected and one of the following moves
carried out~see Fig. 1!. With probabilityq an atom is depos-
ited at sitei, increasinghi by 1. Otherwise one of the neare
neighbors is randomly selected. If the selected neighbor i
a lower height, indicating the edge of a terrace, an atom
removed from sitei. In both cases a move is abandoned if t
resulting configuration would violate the condition~5!. Each
attempted update corresponds to an average time incre
Dt51/L.

In the limit L→` the model has the following phenom
enological properties. If the growth rateq is small, the inter-
face is flat and pinned to a spontaneously selected bot
layer. Small islands will occasionally grow on top of th
bottom layer but will quickly be eliminated by desorption
the islands edges so that the system eventually reach
stationary state characterized by a finite width. Asq is in-
creased, more and more islands on top of the bottom la
are produced, until aboveqc , the critical value ofq, the
islands merge and the interface starts moving. Approach
qc from below, the stationary width is found to diverge log
rithmically. In Refs.@7,8# it was shown that the roughenin
transition in this class of models is driven by a directed p
colation ~DP! transition @9# at the spontaneously selecte
bottom layer. This means that the density of exposed site
©2003 The American Physical Society10-1
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the bottom layern0 can be interpreted as the density of a
tive sites in a DP process. Therefore, at criticality this den
is expected to decay as

n0;t2d, ~6!

whered5b/n'.0.1595 is one of the dynamic critical expo
nents of DP in~111! dimensions. Similarly the critical be
havior at the first few layers above the bottom layer can
described in terms of unidirectionally coupled DP proces
@10#. Roughly speaking each layer can be associated wi
DP process which is coupled to the layer below. Effect
couplings in opposite direction, which certainly exist in t
model defined above, turn out to be irrelevant. Fie
theoretic renormalization group studies revealed that
scaling exponentsn i and n' ~and hence their ratioz
5n i /n') are the same at all levels, while the expone
associated with the order parameters decrease with inc
ing height above the bottom layer. Thus the concept of u
directionally coupled DP successfully explains the critic
behavior at the first few layers above the bottom layer. Ho
ever, it cannot predict the critical properties of the interfa
as a whole, especially the scaling of the interface width.

III. NUMERICAL SIMULATIONS

A. Scaling properties at the critical point

Performing high-precision simulations on a parallel co
puter we first used Eq.~6! to estimate the critical threshold
As shown in Fig. 2 we obtain the result

qc51.8861~1! ~7!

which is much more accurate than the previous estimate
ported in Ref.@7#. Moreover, our simulations confirm tha
the dynamics at the bottom layer is indeed driven by a
process.

At the critical pointq5qc the average height

H5
1

L (
i 51

L

hi ~8!

FIG. 1. Dynamic rules for deposition (→) and evaporation
(←) of the restricted model introduced in Ref.@7#. Note that evapo-
ration from the middle of plateaus is not allowed.
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and the squared interface width

W25
1

L (
i 51

L

~hi2H !2 ~9!

are found to increaselogarithmically with time as

W2~ t !.t ln t, ~10!

H~ t !.s ln t, ~11!

where t50.102(3) ands50.133(3) ~see Fig. 3!. Thus,
apart from different prefactors, the squared width and
mean height show the same type of logarithmic behavior.
note that in a previous work the width was erroneously c
jectured to increase asW(t);(ln t)0.43 @8#.

FIG. 2. Density of exposed sites at the bottom layern0(t) times
td in a system with 32768 sites averaged over up to 1000 indep
dent runs for different values of q.

FIG. 3. The squared interface widthW2 and the average heigh
H as functions of time in a log-lin plot. The simulation paramete
are the same as in Fig. 2. The inset shows that both quant
increase logarithmically at the critical point. Small deviations f
t.105 can be traced back to the onset of finite-size effects.
0-2
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B. Finite-size simulations

In a finite system the critical behavior depends on the t
of the boundary condition. In what follows we consider~a!
periodic and~b! Dirichlet boundary conditions, where th
sites at the boundary are fixed at zero height. As shown
Fig. 4, the average heightH(L,t) and the squared width
W2(L,t) first increase logarithmically until finite-size effec
become relevant and the system crosses over to a diffe
regime, where the width saturates. Measuring the satura
levels we find that

Wsat
2 ~L !.Ap, f1lp, f ln L, ~12!

where the indicesp, f stand for periodic and fixed boundar
conditions, respectively. Our best estimates are

Ap520.16~1!, lp50.161~2!,
~13!

Af520.21~1!, l f50.163~2!.

FIG. 4. Finite size simulations: Squared widthW2(L,t) and
mean heightH(L,t) averaged over at least 500 independent run
a finite system withL58,16,32, . . . ,1024 sites for~a! periodic and
~b! fixed boundary conditions. In the lower panel the curves
H(t) have been shifted vertically.
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Apparently the amplitudel is universal in the sense that
does not depend on the choice of the boundary condition

Unlike the width, the interface height does only saturate
fixed boundary conditions are used. Here we find a sim
formula

Hsat~L !.Bf1m f ln L, ~14!

where

Bf520.24~1!, m f50.212~10!. ~15!

In order to collapse the curves shown in Fig. 4, recall t
the roughening transition in this model is driven by a~111!-
dimensional DP process at the bottom layer, which is ch
acterized by a dynamic exponent

z5n i /n'.1.5807. ~16!

Moreover it has been shown that the critical dynamics at
first few layers is the same as in a sequence of unidirect
ally coupled DP processes, which are all characterized by
samedynamic exponentz. Therefore, it is reasonable to a
sume that the roughening transition as a whole is charac
ized by the dynamic exponent of DP so that finite-size sc
ing functions can only depend on the scaling-invariant ra
t/Lz. Thus, the expected scaling forms read

W2~L,t !.l ln L1 f ~ t/Lz!,
~17!

H~L,t !.m ln L1g~ t/Lz!,

where f (j) and g(j) are scaling functions with the
asymptotic behavior

f ~j!5
l

z
ln j, g~j!5

m

z
ln j ~18!

for j→0 and f (j)5A and g(j)5B for j→`. In order to
verify these scaling forms we plotW2(L,t)2l ln L and
H(L,t)2m ln L versust/Lz. As shown in Fig. 5, we obtain
excellent data collapses.

n

r

FIG. 5. Finite-size simulations: Data collapse of the curv
shown in Fig. 4 according to the scaling forms~17! for L
532,64, . . . ,1024. In order to eliminate deviations due to initi
transients all data points fort,100 have been discarded.
0-3
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C. Off-critical simulations

A similar situation is encountered in off-critical simula
tions. In the subcritical regimeq,qc the width and the av-
erage height saturate at

Wsat
2 ~e!5C2h lnueu,

Hsat~e!5D2f lnueu, ~19!

where e5q2qc denotes the distance from criticality. Fo
lowing the same arguments as in the preceding section
conjectured scaling forms read

W2~e,t !52h lnueu1F~ tueun i!,

H~e,t !52f lnueu1G~ tueun i!, ~20!

wheren i.1.7338 is the temporal scaling exponent of DP
~111! dimensions. These scaling forms are expected to h
not only below but also above criticality. In fact, plottin
W2(e,t)1h lnueu andH(e,t)1f lnueu versustueun i ~see Fig.
6!, the best data collapses are obtained for

h50.173~10!, f50.230~10!, ~21!

while the constants are estimated by

C520.40~1!, D520.54~1!. ~22!

D. Relations among the amplitudes

Obviously the scaling forms~17! and~19! suggest that the
exponentiatedquantities exp(W2) and exp(H) display ordi-
nary power-law scaling. This would imply that the results f
finite-size and off-critical scaling can be combined in
single scaling form, e.g.,

exp@W2~e,L,t !#5LlF̃~eL1/n',t/Lz!,

exp@H~e,L,t !#5LmG̃~eL1/n',t/Lz!. ~23!

This in turn would imply that the six amplitude
l,m,t,s,h,f introduced above, which now play the role

FIG. 6. Off-critical simulations fore560.0001, 60.0002,
. . . ,60.0128 on a chain with 32 768 sites averaged over 200
dependent runs. The figure shows data collapses according t
scaling forms~19!. In order to eliminate deviations due to initia
transients all data points fort,100 have been removed.
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critical exponents, are no longer independent. Only two
them, sayh andf, are independent while the others can
expressed as

l5h/n' ,

m5f/n' ,
~24!

t5h/n i ,

s5f/n i ,

where n'.1.0968 andn i.1.7338. As shown in Table
these relations are compatible with the numerical results

IV. SIMPLE APPROXIMATION

Why does the interface roughen logarithmically at t
transition? To answer this question we present a simple
proximation for the average interface heightH(L) in a finite
~111!-dimensional system at criticality. We consider fixe
boundary conditions, i.e., the interface is pinned to the b
tom layer at the two boundary sites. In between the interf
may return to the bottom layer several times, dividing t
chain into intervals of different lengths,1 ,,2, etc, as
sketched in Fig. 7. The approximation relies on the followi
assumptions:

~i! The probability distribution for the interval sizes, is
the same as the size distribution of inactive islands in a
process, which is known to decrease asP(,);,b/n'22

.,20.25.
~ii ! As we are using fixed boundary conditions, we w

assume that this probability distribution is cut off at the sy
tem size, i.e.,P(,)50 for ,>L.

~iii ! The sites, where the interface touches the bott
layer, can be regarded as fixed boundary conditions for

-
the

TABLE I. Summary of the estimated amplitudes.

Quantity Amplitude Estimate

W2(t) t 0.102(3)
H(t) s 0.133(3)
W2(L,t) lp 0.161(2)
W2(L,t) l f 0.163(2)
H(L,t) mp 0.208(10)
H(L,t) m f 0.212(10)
W2(e,t) h 0.173(10)
H(e,t) f 0.230(10)

FIG. 7. Approximation of the average height by consideri
islands of size,1 ,,2 ,,3,etc. ~see text!.
0-4
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dynamics taking place at the following layer.
While the first two assumptions can be justified by n

merical checks, the third assumption is crucial since the s
at the bottom layer evolve in time and can only be regar
as fixed in an approximate sense. However, using this
proximation we can derive a recursion relation since e
island~for example the island encircled by the dotted line
Fig. 7! can be regarded as an independent growth pro
taking place in a finite system of size, with fixed boundary
conditions at the following layer. Obviously, the avera
height of such an island will be 11H(,). In order to calcu-
late the average height of the entire interfaceH(L), one has
to add up all these contributions weighted by the island s
,. Replacing sums by integrals, this leads to the integ
equation

H~L !5

E
0

L

d, ,P~, !@11H~, !#

E
0

L

d, ,P~, !

. ~25!

Shifting the denominator to the left-hand side and differen
ating with respect toL we obtain

dH~L !

dL E
0

L

d, ,P~, !5LP~L !, ~26!

or equivalently

dH~L !

dL
5

d

dL
lnE

0

L

d, ,P~, !, ~27!

leading to the solution

H~L !5const1 lnE
0

L

d, ,P~, !5const1
b

n'

ln L. ~28!

Thus the approximation correctly reproduces the logarith
increase of the average height in a finite critical syste
However, the predicted amplitudem5b/n'.0.25 differs
from the measured valuem'0.21.

A similar argument can be used to explain the logarithm
increase of the squared width. To this end we first calcu
the second moment of the height

M2~L !5
1

L (
i 51

L

hi
2 . ~29!

Using the same assumptions as before, each island of s,
contributes toM2(L) with a term

M2~, !uh→h115112H~, !1M2~, !. ~30!

Replacing sums by integrals we obtain the integral equa
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M2~L !5

E
0

L

d, ,P~, !@112H~, !1M2~, !#

E
0

L

d, ,P~, !

, ~31!

leading to the differential equation

dM2~L !

dL E
0

L

d, ,P~, !5LP~L !12LP~L !H~L !. ~32!

In order to remove the mixed term on the right-hand side
differentiate the squared widthW2(L)5M2(L)2H2(L)
with respect toL and combine the result with Eq.~26!:

d@W2~L !2M2~L !#

dL E
0

L

d, ,P~, !522LP~L !H~L !.

~33!

Inserting Eq.~32! the mixed term drops out and we obta
the differential equation

dW2~L !

dL E
0

L

d, ,P~, !5LP~L !, ~34!

which has exactly the same form as Eq.~26!. Therefore,
W2(L) and H(L) will only differ by a constant. Again the
approximation correctly reproduces the logarithmic incre
but cannot predict the precise value of the amplitude.

V. CONCLUSIONS

In the present paper, we have analyzed the scaling be
ior at the roughening transition of a restricted solid-on-so
growth process with evaporation at the edges of terra
Restricting to the case of a one-dimensional substrate
have carried out extensive Monte Carlo simulations, exce
ing the temporal range of previous numerical studies by th
decades. The numerical results confirm that the transitio
indeed driven by a directed percolation process at the bot
layer. Furthermore, they clearly show that squared interf
width W2(t) and the average height above the bottom la
H(t) increase logarithmically with time. Analyzing numer
cal data from finite-size and off-critical simulations we ha
postulated appropriate scaling forms which generate ex
lent data collapses. These scaling forms can be interprete
such a way that the exponentiated quantities exp(W2) and
exp(H) obey ordinary power-law scaling, which allows on
to derive various relations among the amplitudes. Moreo
we have presented a simple approximation which expla
why W2 andH grow logarithmically.

In contrast to the expectations expressed in Ref.@8#, we
cannot find evidence for several competing length sca
Moreover, there is no evidence for logarithmic scaling bas
on local scale invariance@11#, rather the system shows ord
nary scaling after an appropriate redefinition~exponentia-
tion! of the order parameters.

Our results suggest that any roughening transition, wh
is driven by a phase transition from an active into an abso
0-5
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ing state at the bottom layer, should exhibit this type of log
rithmic roughening. An important example is a recently
troduced model for dimer adsorption and desorption@12#,
where the transition is driven by a parity-conserving tran
tion at the bottom layer.
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